Who Should Sell Stocks?

Ren Liu

joint work with Paolo Guasoni and Johannes Muhle-Karbe

ETH Zürich

Imperial-ETH Workshop on Mathematical Finance 2015

Merton's Problem (1969)

- Frictionless market consisting of one safe and one risky asset
- Constant investment opportunities and CRRA for the investor
- Maximize the expected utility of final wealth
- **Solution**: risky weight $\pi_t \equiv \pi_*$

Merton's Problem with Proportional Transaction Costs

Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)...

- No trading, if the risky weight is inside a certain no-trade region
- Minimal trading (of local-time type), if the boundaries of the no-trade region are breached

Merton's Problem

Merton's Problem with $\varepsilon=1\%$

Merton's Problem and with $\varepsilon=1\%$ and $\delta=3\%$

Merton's Problem with $\varepsilon=1\%$

Merton's Problem and with $\varepsilon=1\%$ and $\delta=3\%$

 For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)
- Buy-and-hold is only optimal for very particular preferences

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)
- Buy-and-hold is only optimal for very particular preferences
- Jang 2007: numerical approach, but no new effect

 Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)
- More complicated model might lead to simpler optimal solutions

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M&M theorem)
- More complicated model might lead to simpler optimal solutions
- Closed form optimal strategies even with capital gains tax

Model

Standing Assumptions:

• Black-Scholes dynamics with continuous dividends:

$$dS_t/S_t = (r + \mu - \delta)dt + \sigma dW_t$$

- Proportional Transaction Costs: buy at the ask price $(1+\varepsilon)S$, sell at the bid price $(1-\varepsilon)S$
- Constant Relative Risk Aversion $0 < \gamma \neq 1$
- Infinite planning horizon
- Frictionless solution: $0<\pi_*=\mu/\gamma\sigma^2<1$, i.e, no short or levered positions

Long-run Optimality

Goal: maximize the equivalent safe rate ESR among all admissible strategies:

$$\max\left(\liminf_{T\to\infty}\frac{1}{T}\log\mathbb{E}\left[(\Xi_T)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}\right)$$

- Ξ_t = liquidation value at time t
- admissible "=" self financing and $\Xi_t \geq 0$

Main Results: Parameter assumption

Set

$$\begin{split} \pi_{\pm}^{\dagger}(\lambda) &= \frac{\mu \pm \varepsilon \delta / (1 \mp \varepsilon) \pm \sqrt{\lambda^2 \pm 2\mu\varepsilon\delta / (1 \mp \varepsilon) + (\varepsilon\delta / (1 \mp \varepsilon))^2}}{\gamma\sigma^2} \\ \pi_{-}(\lambda) &= \pi_{-}^{\dagger}(\lambda), \quad \pi_{+}(\lambda) = \min\left(\pi_{+}^{\dagger}, 1\right). \end{split}$$

Suppose one of the following condition is satisfied:

- (a) there exists $\lambda>0$ such that $\pi_+(\lambda)<1$ and the solution $w(\cdot,\lambda)$ of terminal value problem also satisfies a certain initial condition.
- (b) there exists $\lambda>0$ such that $\pi_+(\lambda)=1$ and the solution $w(\cdot,\lambda)$ of a Riccati ODE with a limit condition at infinity also satisfies a certain initial condition.

Main Results: Optimal Policy

Theorem

In the presence of proportional transaction costs $\varepsilon > 0$ and a continuous yield $\delta > 0$ an investor trades to maximizes the equivalent safe rate. Then, under the previous assumption we have:

- It is optimal to keep the risky weight within the buying and selling boundaries $[\pi_-, \pi_+]$
- The optimal equivalent safe rate $\beta = r + (\mu^2 \lambda^2)/2\gamma\sigma^2$
- In case of $\pi_+ < 1$ it holds

$$egin{align} \pi_{\pm} &= \pi_* \pm \left(rac{3}{2\gamma}\pi_*^2\left(1-\pi_*
ight)^2
ight)^{1/3}arepsilon^{1/3} \ &+ rac{\delta}{\gamma\sigma^2}\left(rac{2\gamma\pi_*}{3\left(1-\pi_*
ight)^2}
ight)^{1/3}arepsilon^{2/3} + \mathcal{O}(arepsilon) \qquad ext{as} \qquad arepsilon \downarrow 0 \ \end{aligned}$$

Figure: The no-trade region (vertical axis) plotted against the dividend yield δ (horizontal axis) for $\gamma=3.45$ ($\pi_*=90.6\%$), $\mu=8\%$, $\sigma=16\%$ and $\varepsilon=1\%$.

Figure: The never-sell region (shaded) for pairs of dividend yield δ (horizontal axis) and frictionless portfolio weight π_* (vertical axis). Parameters are $\mu=8\%$, $\sigma=16\%$ and $\varepsilon=1\%$.

Robustness

π_*	optimal	never sell	buy & hold
50%	1.67%	2.00%	4.67%
70%	1.58%	1.58%	4.21%
90%	1.52%	1.52%	3.70%

Table: Relative equivalent safe rate loss of the optimal ($[\pi_-,\pi_+]$), never sell ($[\pi_-,1]$) and buy-and-hold ([0,1]). These numbers are computed using Monte Carlo simulation with T=20, time step dt=1/250 and sample size $N=2\cdot 10^7$, $\mu=8\%$, $\sigma=16\%$, r=1%, $\delta=2\%$, and $\varepsilon=1\%$.

• Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$

- Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta\tau$

- **Dividend Tax**: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta \tau$
- Capital Gains Tax: Sales of the risky asset induces a tax payment or credit of $\alpha(S_t-B_t)$ with $0<\alpha<1$ (B is the cost basis process/reference value)

- **Dividend Tax**: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta \tau$
- Capital Gains Tax: Sales of the risky asset induces a tax payment or credit of $\alpha(S_t B_t)$ with $0 < \alpha < 1$ (B is the cost basis process/reference value)
- Choices for B: Share Specification Method/Weighted Average Cost Method cf. Dammon, Spatt and Zhang (2001), Tahar, Soner and Touzi (2010)

Taxes

π_*	$[\pi,\pi_+]_{ave}$	$[\pi,\pi_+]_{ss}$	never sell	buy & hold
50%	2.41%	2.41%	2.07%	4.48%
70%	1.91%	1.91%	1.64%	3.55%
90%	1.36%	1.36%	1.36%	2.94%

Table: Relative equivalent safe rate loss of the capital gains tax adjusted optimal ([π_-,π_+]), never sell ([$\pi_-,1$]) and buy-and-hold ([0,1]). These numbers are computed using Monte Carlo simulation with T=20, time step dt=1/250 and sample size $N=2\cdot 10^7$, $\mu=8\%$, $\sigma=16\%$, $\alpha=20\%$, $\tau=20\%$, $\tau=1\%$, $\delta=2\%$ and $\varepsilon=1\%$.

Consumption

 Objective function cf. Janecek and Shreve (2004), Shreve and Soner (1994)

$$\max\left(\frac{1}{1-\gamma}\mathbb{E}\left[\int_0^\infty \mathrm{e}^{-\rho t}C_t^{1-\gamma}dt\right]\right)$$

• For $\varepsilon = 0$ we have

$$\frac{C_t^*}{X_t + Y_t} = \frac{\rho}{\gamma} + \left(1 - \frac{1}{\gamma}\right) \left(r + \frac{\mu^2}{2\gamma\sigma^2}\right)$$

 This consumption policy is approximately optimal even with small proportional transaction costs (Kallsen and Muhle-Karbe 2013)

Consumption

π_*	$[\pi^{js},\pi_+^{js}]$	never sell	buy & hold
50%	1.00%	1.67%	2.00%
70%	0.53%	1.05%	1.05%
90%	0.22%	0.65%	0.65%

Table: Relative equivalent safe rate loss of the asymptotically optimal $([\pi_-^{js},\pi_+^{js}]),$ never sell $([\pi_-,1])$ and simple buy-and-hold ([0,1]) strategies with π_\pm^{is} as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with T=50, time step dt=1/250, sample size $N=2\times 10^7,$ $\mu=8\%,$ $\sigma=16\%,$ $\rho=2\%,$ r=1%, $\delta=3\%,$ $\tau=0\%$ and $\varepsilon=1\%.$

Consumption

π_*	$[\pi^{js},\pi_+^{js}]$	never sell	buy & hold
50%	1.00%	1.33%	2.33%
70%	0.53%	0.79%	1.05%
90%	0.22%	0.22%	0.22%

Table: Relative equivalent safe rate loss of the asymptotically optimal $([\pi_-^{js},\pi_+^{js}])$, never sell $([\pi_-,1])$ and simple buy-and-hold ([0,1]) strategies with π_\pm^{js} as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with T=50, time step dt=1/250, sample size $N=2\times 10^7$, $\mu=8\%$, $\sigma=16\%$, $\rho=2\%$, r=1%, $\delta=4\%$, $\tau=0\%$ and $\varepsilon=1\%$.

Suggestions and Limitations

- Retirement planning: investors with moderate risk aversions should avoid selling
- After the retirement: gradually liquidate stocks to finance the required consumption or invest in high dividend funds
- Dynamic Buy-and-Hold might be suboptimal for
 - small transaction costs
 - low dividend yields
 - large risk aversions
 - high consumption rates

 Martingale Optimality Condition & long run Ansatz → the reduced HJB equation/ free boundary problem

- Martingale Optimality Condition & long run Ansatz → the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)

- Martingale Optimality Condition & long run Ansatz → the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2v''(z), zv'(z), v(z), \frac{\delta v'(z)}{2}$

- Martingale Optimality Condition & long run Ansatz → the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2v''(z), zv'(z), v(z), \frac{\delta v'(z)}{2}$

- Martingale Optimality Condition & long run Ansatz → the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \leadsto the boundaries of the no-trade region \leadsto fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^2v''(z), zv'(z), v(z), \frac{\delta v'(z)}{2}$
- \bullet The boundary conditions yield the characterization of the gap parameter λ

Construction of Shadow Market (S^0, \tilde{S})

Shadow Price Process S:

- Lies within the bid-ask spread $[(1-\varepsilon)S,(1+\varepsilon)S]$ a.s.
- Existence of a long-run optimal strategy, i.e.,
 - Finite variation strategy
 - Self-financing strategy and solvent w.r.t. \tilde{S}
 - Maximizes the equivalent safe rate w.r.t. \tilde{S}
 - ullet Same dividend payments $ilde{\delta} ilde{\mathcal{S}}=\delta \mathcal{S}$
 - Entails buying only when $\hat{S}_t = (1+arepsilon)S_t$
 - Entails selling only when $S_t = (1-arepsilon)S_t$

Verification

- Optimality of the candidate strategy in shadow market (cf. Guasoni and Robertson 2012)
 - (super-) Martingale measure ⇒ upper bound of the finite horizon ESR
 - Candidate strategy ⇒ lower bound of the finite horizon ESR
 - Upper bound = lower bound as $T \to \infty$
- Optimality of the candidate strategy in original market
 - Property of the shadow market

Thank You!