Who Should Sell Stocks?

Ren Liu
joint work with Paolo Guasoni and Johannes Muhle-Karbe

ETH Zürich

Imperial-ETH Workshop on Mathematical Finance 2015

Merton's Problem (1969)

- Frictionless market consisting of one safe and one risky asset
- Constant investment opportunities and CRRA for the investor
- Maximize the expected utility of final wealth
- Solution: risky weight $\pi_{t} \equiv \pi_{*}$

Merton's Problem with Proportional Transaction Costs

Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)...

- No trading, if the risky weight is inside a certain no-trade region
- Minimal trading (of local-time type), if the boundaries of the no-trade region are breached

Merton's Problem with Transaction Costs and Continous Dividends

Merton's Problem

Merton's Problem with Transaction Costs and Continous Dividends

Merton's Problem with $\varepsilon=1 \%$

Merton's Problem with Transaction Costs and Continous Dividends

Merton's Problem and with $\varepsilon=1 \%$ and $\delta=3 \%$

Merton's Problem with Transaction Costs and Continous Dividends

Merton's Problem with $\varepsilon=1 \%$

Merton's Problem with Transaction Costs and Continous Dividends

Merton's Problem and with $\varepsilon=1 \%$ and $\delta=3 \%$

Motivation

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)

Motivation

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)

Motivation

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)
- Buy-and-hold is only optimal for very particular preferences

Motivation

- For long-term investment problem common advice is to buy-and-hold a stock portfolio: cf. Siegel (1998), Malkiel (1999)
- Theoretical models suggest to buy and sell: cf. Merton (1969, 1971), Magill and Constantinides (1976)/ Constantinides (1986)/ Davis and Norman (1990) / Shreve and Soner (1994)
- Buy-and-hold is only optimal for very particular preferences
- Jang 2007: numerical approach, but no new effect

This paper

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters

This paper

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M\&M theorem)

This paper

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M\&M theorem)
- More complicated model might lead to simpler optimal solutions

This paper

- Merton's problem with prop. transaction costs and continuous dividends: dynamic Buy-and-Hold can be optimal for a range of realistic parameters
- Dividends are relevant for the portfolio choice problem in contrast to capital structure (M\&M theorem)
- More complicated model might lead to simpler optimal solutions
- Closed form optimal strategies even with capital gains tax

Model

Standing Assumptions:

- Black-Scholes dynamics with continuous dividends:

$$
d S_{t} / S_{t}=(r+\mu-\delta) d t+\sigma d W_{t}
$$

- Proportional Transaction Costs: buy at the ask price $(1+\varepsilon) S$, sell at the bid price $(1-\varepsilon) S$
- Constant Relative Risk Aversion $0<\gamma \neq 1$
- Infinite planning horizon
- Frictionless solution: $0<\pi_{*}=\mu / \gamma \sigma^{2}<1$, i.e, no short or levered positions

Long-run Optimality

Goal: maximize the equivalent safe rate ESR among all admissible strategies:

$$
\max \left(\liminf _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{E}\left[\left(\Xi_{T}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}}\right)
$$

- $\bar{\Xi}_{t}=$ liquidation value at time t
- admissible " $=$ " self financing and $\bar{\Xi}_{t} \geq 0$

Main Results: Parameter assumption

Set

$$
\begin{aligned}
& \pi_{ \pm}^{\dagger}(\lambda)=\frac{\mu \pm \varepsilon \delta /(1 \mp \varepsilon) \pm \sqrt{\lambda^{2} \pm 2 \mu \varepsilon \delta /(1 \mp \varepsilon)+(\varepsilon \delta /(1 \mp \varepsilon))^{2}}}{\gamma \sigma^{2}} \\
& \pi_{-}(\lambda)=\pi_{-}^{\dagger}(\lambda), \quad \pi_{+}(\lambda)=\min \left(\pi_{+}^{\dagger}, 1\right)
\end{aligned}
$$

Suppose one of the following condition is satisfied:
(a) there exists $\lambda>0$ such that $\pi_{+}(\lambda)<1$ and the solution $w(\cdot, \lambda)$ of terminal value problem also satisfies a certain initial condition.
(b) there exists $\lambda>0$ such that $\pi_{+}(\lambda)=1$ and the solution $w(\cdot, \lambda)$ of a Riccati ODE with a limit condition at infinity also satisfies a certain initial condition.

Main Results: Optimal Policy

Theorem

In the presence of proportional transaction costs $\varepsilon>0$ and a continuous yield $\delta>0$ an investor trades to maximizes the equivalent safe rate. Then, under the previous assumption we have:

- It is optimal to keep the risky weight within the buying and selling boundaries $\left[\pi_{-}, \pi_{+}\right.$]
- The optimal equivalent safe rate $\beta=r+\left(\mu^{2}-\lambda^{2}\right) / 2 \gamma \sigma^{2}$
- In case of $\pi_{+}<1$ it holds

$$
\begin{aligned}
\pi_{ \pm} & =\pi_{*} \pm\left(\frac{3}{2 \gamma} \pi_{*}^{2}\left(1-\pi_{*}\right)^{2}\right)^{1 / 3} \varepsilon^{1 / 3} \\
& +\frac{\delta}{\gamma \sigma^{2}}\left(\frac{2 \gamma \pi_{*}}{3\left(1-\pi_{*}\right)^{2}}\right)^{1 / 3} \varepsilon^{2 / 3}+\mathcal{O}(\varepsilon) \quad \text { as } \quad \varepsilon \downarrow 0
\end{aligned}
$$

Figure: The no-trade region (vertical axis) plotted against the dividend yield δ (horizontal axis) for $\gamma=3.45\left(\pi_{*}=90.6 \%\right), \mu=8 \%, \sigma=16 \%$ and $\varepsilon=1 \%$.

Figure: The never-sell region (shaded) for pairs of dividend yield δ (horizontal axis) and frictionless portfolio weight π_{*} (vertical axis). Parameters are $\mu=8 \%, \sigma=16 \%$ and $\varepsilon=1 \%$.

Robustness

π_{*}	optimal	never sell	buy \& hold
50%	1.67%	2.00%	4.67%
70%	1.58%	1.58%	4.21%
90%	1.52%	1.52%	3.70%

Table: Relative equivalent safe rate loss of the optimal ($\left[\pi_{-}, \pi_{+}\right]$), never sell ($\left[\pi_{-}, 1\right]$) and buy-and-hold ($[0,1]$). These numbers are computed using Monte Carlo simulation with $T=20$, time step $d t=1 / 250$ and sample size $N=2 \cdot 10^{7}, \mu=8 \%, \sigma=16 \%, r=1 \%, \delta=2 \%$, and $\varepsilon=1 \%$.

Robustness with respect to Taxes

- Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$

Robustness with respect to Taxes

- Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta \tau$

Robustness with respect to Taxes

- Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta \tau$
- Capital Gains Tax: Sales of the risky asset induces a tax payment or credit of $\alpha\left(S_{t}-B_{t}\right)$ with $0<\alpha<1$ (B is the cost basis process/reference value)

Robustness with respect to Taxes

- Dividend Tax: suppose the effective dividend rate $=\delta(1-\tau)$ with $0<\tau<1$ and the expected, ex-dividend return remains $\mu-\delta$
- This model is equivalent to a model without dividend tax but with a dividend yield $\tilde{\delta}=\delta(1-\tau)$ and expected total return $\tilde{\mu}=\mu-\delta \tau$
- Capital Gains Tax: Sales of the risky asset induces a tax payment or credit of $\alpha\left(S_{t}-B_{t}\right)$ with $0<\alpha<1$ (B is the cost basis process/reference value)
- Choices for B: Share Specification Method/Weighted Average Cost Method cf. Dammon, Spatt and Zhang (2001), Tahar, Soner and Touzi (2010)

Taxes

π_{*}	$\left[\pi_{-}, \pi_{+}\right]_{\text {ave }}$	$\left[\pi_{-}, \pi_{+}\right]_{\text {ss }}$	never sell	buy \& hold
50%	2.41%	2.41%	2.07%	4.48%
70%	1.91%	1.91%	1.64%	3.55%
90%	1.36%	1.36%	1.36%	2.94%

Table: Relative equivalent safe rate loss of the capital gains tax adjusted optimal ($\left[\pi_{-}, \pi_{+}\right]$), never sell ($\left[\pi_{-}, 1\right]$) and buy-and-hold ($[0,1]$). These numbers are computed using Monte Carlo simulation with $T=20$, time step $d t=1 / 250$ and sample size $N=2 \cdot 10^{7}, \mu=8 \%, \sigma=16 \%$, $\alpha=20 \%, \tau=20 \%, r=1 \%, \delta=2 \%$ and $\varepsilon=1 \%$.

Consumption

- Objective function cf. Janecek and Shreve (2004), Shreve and Soner (1994)

$$
\max \left(\frac{1}{1-\gamma} \mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} C_{t}^{1-\gamma} d t\right]\right)
$$

- For $\varepsilon=0$ we have

$$
\frac{C_{t}^{*}}{X_{t}+Y_{t}}=\frac{\rho}{\gamma}+\left(1-\frac{1}{\gamma}\right)\left(r+\frac{\mu^{2}}{2 \gamma \sigma^{2}}\right)
$$

- This consumption policy is approximately optimal even with small proportional transaction costs (Kallsen and Muhle-Karbe 2013)

Consumption

π_{*}	$\left[\pi_{-}^{j s}, \pi_{+}^{j s}\right]$	never sell	buy \& hold
50%	1.00%	1.67%	2.00%
70%	0.53%	1.05%	1.05%
90%	0.22%	0.65%	0.65%

Table: Relative equivalent safe rate loss of the asymptotically optimal $\left(\left[\pi_{-}^{i s}, \pi_{+}^{i s}\right]\right)$, never sell $\left(\left[\pi_{-}, 1\right]\right)$ and simple buy-and-hold ($[0,1]$) strategies with $\pi_{ \pm}^{j s}$ as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with $T=50$, time step $d t=1 / 250$, sample size $N=2 \times 10^{7}, \mu=8 \%, \sigma=16 \%, \rho=2 \%$, $r=1 \%, \delta=3 \%, \tau=0 \%$ and $\varepsilon=1 \%$.

Consumption

π_{*}	$\left[\pi_{-}^{j s}, \pi_{+}^{j s}\right]$	never sell	buy \& hold
50%	1.00%	1.33%	2.33%
70%	0.53%	0.79%	1.05%
90%	0.22%	0.22%	0.22%

Table: Relative equivalent safe rate loss of the asymptotically optimal $\left(\left[\pi_{-}^{j s}, \pi_{+}^{j s}\right]\right)$, never sell $\left(\left[\pi_{-}, 1\right]\right)$ and simple buy-and-hold $([0,1])$ strategies with $\pi_{ \pm}^{j s}$ as defined in [Janecek and Shreve, Theorem 2]. These numbers are computed using Monte Carlo simulation with $T=50$, time step $d t=1 / 250$, sample size $N=2 \times 10^{7}, \mu=8 \%, \sigma=16 \%, \rho=2 \%$, $r=1 \%, \delta=4 \%, \tau=0 \%$ and $\varepsilon=1 \%$.

Suggestions and Limitations

- Retirement planning: investors with moderate risk aversions should avoid selling
- After the retirement: gradually liquidate stocks to finance the required consumption or invest in high dividend funds
- Dynamic Buy-and-Hold might be suboptimal for
- small transaction costs
- low dividend yields
- large risk aversions
- high consumption rates

Heuristic Derivation

- Martingale Optimality Condition \& long run Ansatz \rightsquigarrow the reduced HJB equation/ free boundary problem

Heuristic Derivation

- Martingale Optimality Condition \& long run Ansatz \rightsquigarrow the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \rightsquigarrow the boundaries of the no-trade region \rightsquigarrow fixed boundary problem (depending on λ)

Heuristic Derivation

- Martingale Optimality Condition \& long run Ansatz \rightsquigarrow the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \rightsquigarrow the boundaries of the no-trade region \rightsquigarrow fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^{2} v^{\prime \prime}(z), z v^{\prime}(z), v(z), \delta v^{\prime}(z)$

Heuristic Derivation

- Martingale Optimality Condition \& long run Ansatz \rightsquigarrow the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \rightsquigarrow the boundaries of the no-trade region \rightsquigarrow fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^{2} v^{\prime \prime}(z), z v^{\prime}(z), v(z), \delta v^{\prime}(z)$
- We use a "power" transformation (cf. Jang (2007)) of the HJB equation \rightsquigarrow Whittaker equation (explicit solutions in terms of the Whittaker functions)

Heuristic Derivation

- Martingale Optimality Condition \& long run Ansatz \rightsquigarrow the reduced HJB equation/ free boundary problem
- Smooth pasting conditions \rightsquigarrow the boundaries of the no-trade region \rightsquigarrow fixed boundary problem (depending on λ)
- The reduced HJB equation contains terms like $z^{2} v^{\prime \prime}(z), z v^{\prime}(z), v(z), \delta v^{\prime}(z)$
- We use a "power" transformation (cf. Jang (2007)) of the HJB equation \rightsquigarrow Whittaker equation (explicit solutions in terms of the Whittaker functions)
- The boundary conditions yield the characterization of the gap parameter λ

Construction of Shadow Market $\left(S^{0}, \tilde{S}\right)$

Shadow Price Process S̃:

- Lies within the bid-ask spread $[(1-\varepsilon) S,(1+\varepsilon) S]$ a.s.
- Existence of a long-run optimal strategy, i.e.,
- Finite variation strategy
- Self-financing strategy and solvent w.r.t. \tilde{S}
- Maximizes the equivalent safe rate w.r.t. \tilde{S}
- Same dividend payments $\tilde{\delta} \tilde{S}=\delta S$
- Entails buying only when $\tilde{S}_{t}=(1+\varepsilon) S_{t}$
- Entails selling only when $\tilde{S}_{t}=(1-\varepsilon) S_{t}$

Verification

- Optimality of the candidate strategy in shadow market (cf. Guasoni and Robertson 2012)
- (super-) Martingale measure \Rightarrow upper bound of the finite horizon ESR
- Candidate strategy \Rightarrow lower bound of the finite horizon ESR
- Upper bound $=$ lower bound as $T \rightarrow \infty$
- Optimality of the candidate strategy in original market
- Property of the shadow market

Thank You!

